Support for elliptic functions and integrals was written by Raymond
Toy. It is placed under the terms of the General Public License (GPL)
that governs the distribution of Maxima.
File: maxima.info, Node: Definitions for Elliptic Functions, Next: Definitions for Elliptic Integrals, Prev: Introduction to Elliptic Functions and Integrals, Up: Top
Definitions for Elliptic Functions
==================================
- Function: JACOBI_SN (u, m)
The Jacobian elliptic function sn(u,m).
- Function: JACOBI_CN (u, m)
The Jacobian elliptic function cn(u,m).
- Function: JACOBI_DN (u, m)
The Jacobian elliptic function dn(u,m).
- Function: JACOBI_NS (u, m)
The Jacobian elliptic function ns(u,m) = 1/sn(u,m).
- Function: JACOBI_SC (u, m)
The Jacobian elliptic function sc(u,m) = sn(u,m)/cn(u,m).
- Function: JACOBI_SD (u, m)
The Jacobian elliptic function sd(u,m) = sn(u,m)/dn(u,m).
- Function: JACOBI_NC (u, m)
The Jacobian elliptic function nc(u,m) = 1/cn(u,m).
- Function: JACOBI_CS (u, m)
The Jacobian elliptic function cs(u,m) = cn(u,m)/sn(u,m).
- Function: JACOBI_CD (u, m)
The Jacobian elliptic function cd(u,m) = cn(u,m)/dn(u,m).
- Function: JACOBI_ND (u, m)
The Jacobian elliptic function nc(u,m) = 1/cn(u,m).
- Function: JACOBI_DS (u, m)
The Jacobian elliptic function ds(u,m) = dn(u,m)/sn(u,m).
- Function: JACOBI_DC (u, m)
The Jacobian elliptic function dc(u,m) = dn(u,m)/cn(u,m).
- Function: INVERSE_JACOBI_SN (u, m)
The inverse of the Jacobian elliptic function sn(u,m).
- Function: INVERSE_JACOBI_CN (u, m)
The inverse of the Jacobian elliptic function cn(u,m).
- Function: INVERSE_JACOBI_DN (u, m)
The inverse of the Jacobian elliptic function dn(u,m).
- Function: INVERSE_JACOBI_NS (u, m)
The inverse of the Jacobian elliptic function ns(u,m).
- Function: INVERSE_JACOBI_SC (u, m)
The inverse of the Jacobian elliptic function sc(u,m).
- Function: INVERSE_JACOBI_SD (u, m)
The inverse of the Jacobian elliptic function sd(u,m).
- Function: INVERSE_JACOBI_NC (u, m)
The inverse of the Jacobian elliptic function nc(u,m).
- Function: INVERSE_JACOBI_CS (u, m)
The inverse of the Jacobian elliptic function cs(u,m).
- Function: INVERSE_JACOBI_CD (u, m)
The inverse of the Jacobian elliptic function cd(u,m).
- Function: INVERSE_JACOBI_ND (u, m)
The inverse of the Jacobian elliptic function nc(u,m).
- Function: INVERSE_JACOBI_DS (u, m)
The inverse of the Jacobian elliptic function ds(u,m).
- Function: INVERSE_JACOBI_DC (u, m)
The inverse of the Jacobian elliptic function dc(u,m).
File: maxima.info, Node: Definitions for Elliptic Integrals, Prev: Definitions for Elliptic Functions, Up: Top
Definitions for Elliptic Integrals
==================================
- Function: ELLIPTIC_F (phi, m)
The incomplete elliptic integral of the first kind, defined as
integrate(1/sqrt(1 - m*sin(x)^2), x, 0, phi)
See also *Note ELLIPTIC_E::, *Note ELLIPTIC_KC::
- Function: ELLIPTIC_E (phi, m)
The incomplete elliptic integral of the second kind, defined as
ELLIPTIC_E(u, m) = integrate(sqrt(1 - m*sin(x)^2), x, 0, phi) See
also *Note ELLIPTIC_E::, *Note ELLIPTIC_EC::
- Function: ELLIPTIC_EU (u, m)
The incomplete elliptic integral of the second kind, defined as